Testing MCPs in High \vec{B} Facility

Kijun Park ¹, C. Hyde¹, G. Kalicy¹, L.Allison¹, Y. Ilieva², T. Cao², E. Brin², C. Barbar², P. Nadel-Turonski³, C. Zorn³

¹Old Dominion University, ²University of South Carolina, ³Jefferson Lab

Oct.29,2015

K.Park (ODU) JLab R&D 2015 Oct.29,2015

Update of MCPs testing at High \vec{B} Lab

Magnet

- Superconducting solenoid
 Diameter: 5-inch, L: 30-inch, warm bore
- $\vec{B}_{max} = 5.1 \text{T}$ at 82.8A
 - Centeral field inhomogenity: $\leq 5 \times 10^{-5}$ Cylindrical volume (r = 2.5 cm, L = 5 cm)
- Non-magnetic stand for easy access to bore
- Mark down field map boundary on the ground
- Safety beacon's operated by magnetic field

Magnet Cryogenics/Current Control

- 250 litter LHe Dewar allows a week measurement!
 - \rightarrow Magenet (501) is the driving mode
- LHe_re-fill procedure
 - \rightarrow Two persons work, they should communicate effectively
 - \rightarrow Practical training is VERY important
 - → Follow the EXACT procedure and safety !
 - \rightarrow Always monitor LHe level on magnet, in the Dewar
- Be familiar with accidental incident (We experienced couple of times)
- All detail procedure is on the logbook(both hard copy and Elog)
- Operator should be familiar with magnet current control

Test Dark Box

- Non-magnetic, light-tight
- A cylindrical shape
 D_{in} = 4.5-inch, L=18-inch)
- Install a trail and turn-table allows to tranfort and rotate sensor
- LED light source (470nm) with pulser
 + optical fiber

K.Park (ODU) JLab R&D 2015 Oct.29,2015 5 / 25

Test Dark Box

K.Park (ODU) JLab R&D 2015 Oct.29,2015 6 / 2

Signal Processing

Signal Processing

MCP Measurement Strategy

- $\begin{array}{c} \bullet \quad \text{Test MCPs:} \\ \rightarrow \quad \text{PP0365g,PMT210/240,Katod,...} \end{array}$
- Minimize the Mechanical distortion
 → MCP has a magnetizable component as
 part(coaval?)) → Photonis(pp0365g):
 mechanical test up to 1T (signal disappear)
 → Photek210: mechanical test up to 2T
 (signal disappear)
- Angle(θ) scan with various increments
- Keep same ϕ angle (reference position)
- Photek240 is too big to fit into a turn-table
- Pre-Amp(×200) used for both Photonis(pp0365g) and Photek210
- Feeding signal in fADC should be lower than 1V (jumper set: .5/1./2. V)

DAQ

- login: Hall-B network
 - ightarrow ssh -X username@hallgw.jlab.org ightarrow ssh -X clasrun@hightest2.jlab.org
- Start DAQ RunControl GUI : hbtest_start/hbtest_exit
- Connect → Configure (hbtest/hbtest_er) → Download
 Prestart → Go

DATA Storage

- DATA tables are available:
 - → Photek: https://logbooks.jlab.org/entry/3292336
- → Photonis: https://logbooks.jlab.org/entry/3292340
- local computer : hightest2.jlab.org
- ifarm (volatile disk) : /volatile/eic/commissioning/
- Tape Silo: /mss/home/parkkj/highBtest/

Photek210 Drawing

- \bullet Single, Chevron, Gain $\sim 10^6$ (2MCPs)
- FWHM 100ps

Photek210 Voltage Divider

- Allow to provide voltage separately to Cathod-MCP, MCP-MCP, MCP-Anode
- Allow to combination of different voltage sets

- Photek210, $3\mu m$ pore, Voltage: -4.76kV
 - Normalized to the nomial point at 0T and 0(deg) Remark1) $\theta=0$ (deg),
 - \rightarrow linearly decrease signal as increasing \vec{B} Remark2) $\theta > 0$ (deg),
 - ightarrow exponentially decrease signal $ec{B}>0.5 T$

Remark3) No significant ϕ angle dependent was observed

K.Park (ODU)

- Photek210, Modification voltage divider
- $\theta = 0 \text{ (deg)}$
 - Change voltages: Cathod-MCP, MCP-MCP, MCP-Anode
 - Study of volatge correlation w.r.t gain
 - testing all possible combination voltages with various $\theta,~\phi,~\vec{B}$ sets MCP-MCP volatage change
 - is the most sensitive
 - Overall preliminary uncertainty 5%
 - Recover gain at standard HV set by maximize HV(MCP-MCP)
 - Gain can be recoverable up to 5T

- Photek210, Modification voltage divider
- $\theta = 10 \text{ (deg)}$
 - Control voltages: Cathod-MCP, MCP-MCP, MCP-Anode
 - Study of volatge correlation w.r.t gain
 - testing all possible combination voltages with various $\theta,~\phi,~\vec{B}$ sets MCP-MCP volatage change

is the most sensitive

- Overall preliminary uncertainty 5%
- Recover gain at standard HV set by maximize HV(MCP-MCP)
- Gain can be recoverable up to 3T

[** Note: The plot is not normalized by $heta=0(\mathsf{deg})$ and $\mathsf{OT}]$

K.Park (ODU) JLab R&D 2015 Oct.

17 /

- Photek210, Modification voltage divider
- $\theta = 40 \text{ (deg)}$
 - Control voltages: Cathod-MCP, MCP-MCP, MCP-Anode
 - Study of volatge correlation w.r.t gain
 - testing all possible combination voltages with various angle, \vec{B} sets MCP-MCP volatage change

is the most sensitive

- Overall preliminary uncertainty 5%
- Recover gain at standard HV set by maximize HV(MCP-MCP)
- Gain can be recoverable up to 1T

[** Note: The plot is not normalized by $\theta = 0(\deg)$ and 0T]

K.Park (ODU)

Summary

- The high \vec{B} facility has been established and fully functional
 - Superconducting magnet is working very smooth with various modes/fields
 - Own DAQ, Data process allows to have quick feedback of measurement
 - All data(raw/evio/root) have been stored JLab tape silo
- Data collections: Photek PMT210, 240, Photonis,...
 Data contains: fADC, QDC, TDC

 - Converting raw data to ROOT/Ntuple/XML for analysis

Summary

- Photek PMT210: overall good response $\theta = 0 (\deg)$ up to $\vec{B} = 5 \mathrm{T}$
 - Total collected charege is maximum ar $ec{B}\sim 0.5 T$
 - The collected charge shows exponential decrease as \vec{B} increase for $\theta > 5(\deg)$
 - $\theta > 5 (\text{deg})$, good response up to $\vec{B} = 2T$
 - The collected charge drops significant between θ =0(deg) and θ =5(deg)
 - θ >5(deg), it shows a slow change
- Photek PMT240: overall good response $\theta = 0 (\text{deg})$ up to $\vec{B} = 2\text{T}$

Summary

- Increasing the potential difference across the channel plates is a powerful means to recover the loss in gain due to the effect of the magnetic field.
- Gain recovery is strongly correlated with the angle between the MCP and field axes:
 - The larger θ angle, the more limited is the range of fields where the sensor can be operated at the same gate.
- Overall, other optimizations for gain recovery need to be implemented if the orientation of the sensor relative to the field varies significantly
- Data at 20 deg and -20 deg are under analysis.

BACKUP

Charge Calibration using Phillips7120

- Oscilloscope set(1GHz): sample integration : to calculate charge
- Set one of charge (Q) modes (300 pC) in Phillips7120
- ADJ. is set certain value (to make sure you can read -DC[V])
- Remove the horizontal offset by constant fit
- $Q = \frac{1}{R} \int V(t) dt$, where $R = 50\Omega$
- Calculation : use the "KaleidaGraph"
- Choose range before pulse (in order to remove offset)
- Fit it with constant take "mean" value
- Subtraction mean to pulse value Formula Entry: $C_2 = C_1$ - mean
- Integration (macro) in time window (timing range is given by screen set)
- Pulse measurements done with 4 sets of voltage change
- $Q = 31.08 (pC/V) \times V(V) + 1.597 (pC)$

Charge Calibration using Phillips7120

• $Q [pC] = (1.9 \pm 1.2) + (0.01883 \pm 0.00039) \times ADC_{ch}$

K.Park (ODU) JLab R&D 2015 Oct.29,2015 24 / 25

E-LOGBOOK

link: https://logbooks.jlab.org/book/highb